
Lecture 5: Time Series Estimation Techniques

Christian Wolf
MIT

14.461, Fall 2022



Overview

• So far: population arguments for identification of SVMA coefficients

◦ Basic idea: use addt’l identifying information (e.g., invertibility + X, IVs, …) to assign a
causal interpretation to certain estimable moments of aggregate time series data

◦ Open Q: what econometric techniques should we use to estimate those moments?

• Today’s lecture: VARs vs. local projections

◦ Will show that they are nothing more than two different techniques for estimating second
moments. In population, under the same structural ID asn’s, they yield the same objects

◦ Finite-sample recommendations: should we use LPs? VARs? something else?
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VARs vs. Local Projections

• Dominant methods in semi-structural time series: VARs and Local Projections
Going back to Sims (1980) and Jorda (2005)

• Can find a lot of claims in the literature that these are somehow fundamentally
different methods. We will show that is not the case.

• The argument will proceed in two steps:

1. Define VAR and LP estimators

2. Show that their estimands are the same, using linear projection arguments

None of this will rely on an underlying SVMA model.

• Rather, the point of the SVMA model + invertibility/proxies/…is to establish that this
common LP/VAR estimand is actually structurally interesting.
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Setting and estimators

• Data-generating process

◦ Data {wt} are covariance stationary and nondeterministic, with absolutely summable Wold
representation coefficients

◦ Split the data as wt = (r ′t , xt , yt , q′t) where rt and qt are “controls”, and we are interested
in the response of yt to an “impulse” to xt

• LP IRF estimator

◦ A linear projection is a regression of an outcome yt on a “shock” xt plus controls
◦ The LP(∞) regression equation for horizon h = 0, 1, 2, . . . is

yt+h = µh + βhxt + γ
′
hrt +

∞∑
ℓ=1

δ′h,ℓwt−ℓ + ξh,t

◦ The LP IRFs are the {βh}
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Setting and estimators

• VAR IRF estimator
◦ Consider the reduced-form VAR(∞)

wt = c +

∞∑
ℓ=1

Aℓwt−ℓ + ut

◦ Under a recursive ordering, we arrive at the following “structural” VAR:
A(L)wt = c + Bηt

where B = chol(Var(ut)) and ηt ≡ B−1ut , with η1,t ∝ u1,t , η2,t ∝ u2,t − E∗(u2,t | u1,t), …
◦ Let C(L) = A(L)−1. We can then write

wt = χ+ C(L)ut = χ+

∞∑
ℓ=0

CℓBηt , χ ≡ C(1)c

Then the VAR IRF of yt+h to an innovation to xt is
θh ≡ Cnr+2,•,hB•,nr+1
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Equivalence result

Proposition
Let x̃t ≡ xt − E∗ [xt | rt , {wτ}−∞<τ<t ]. Then

θh =

√
E(x̃2t )× βh, h = 0, 1, . . . (1)

• (1) states that LPs and VARs estimate the same impulse responses
◦ Note that so far we haven’t assumed an underlying SVMA model. That will only be needed

to argue that the object in (1) is structurally interesting
◦ The factor of proportionality in (1) just reflects a different scaling normalization, with VARs

normalizing impulses to have unit variance. Will see that in the proof.

• Proof intuition: both techniques simply estimate certain linear projections (= functions
of 2nd moments) and are willing to call them “structural”
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Equivalence result: proof sketch

• By the Frisch-Waugh theorem, the LP estimand is

βh =
Cov(yt+h, x̃t)

E(x̃2t )

• The VAR impulse responses equal

θh = Cnr+2,•,hB•,nr+1 = Cov(yt+h, ηx,t)

where ηt = (η′r,t , ηx,t , ηy,t , η′q,t)′. By the properties of Cholesky decompositions we also
have

ηx,t =
1√
E(ũ2x,t)

× ũx,t

where ut = (u′r,t , ux,t , uy,t , u′q,t)′ and ũx,t ≡ ux,t − E∗(ux,t | ur,t) = x̃t
• Comparing the above relations, the result follows
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Equivalence result: discussion

• Plagborg-Møller and Wolf (2021) further discuss the scope of this equivalence result

◦ Previous argument was for recursive SVAR(∞) estimands. Can easily show that the same
logic works for non-recursive identification: VAR shock = b′ut so we could run the LP

yt+h = µh + βh(b
′wt) +

∞∑
ℓ=1

δ′h,ℓwt−ℓ + ξh,t

◦ Can also show: with p lags (rather than ∞), equivalence ≈ up to horizon p

• The generality of the result reflects its very simple intuition:

◦ VAR(p) IRF = mean-square optimal forecast given the second moments implied by the
VAR(p) model. But a VAR(∞) matches all second-moment properties of the data.

◦ Thus VAR IRF = optimal forecast given second moments of the data = LP

• Next: walk through LP/VAR implementations of some canonical id schemes
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VAR vs. LP: recursive identification

• Recall the identification scheme of Christiano-Eichenbaum-Evans (1999)

◦ Assume SVMA model + invertibility + recursive ordering of macro var’s, consistent with
slow-moving real effects of monetary policy

• How could we implement this as a local projection?
◦ Note that the model fits immediately into our structure from before: rt = GDP, prices, …,
xt = federal funds rate, qt = profits, M2, yt = any variable in VAR

◦ We could thus consider running the LP

yt+h = µh + βhxt + γ
′
hrt +

p∑
ℓ=1

δ′h,ℓwt−ℓ + ξh,t

Q: what happens if h = 0 and yt is in rt , e.g. GDP?

• Let’s see the equivalence result in action by computing the common LP/VAR estimand
in the Smets & Wouters (2007) model as a simple example DGP …
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VAR vs. LP: recursive identification

p = 4
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VAR vs. LP: recursive identification

p = 8
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VAR vs. LP: recursive identification

p = 12
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VAR vs. LP: IV identification

• Now return again to the SVMA-IV model

wt = Θ(L)εt

zt = αε1,t + σννt

• We have seen that relative IRFs are identified. How could we estimate them?

• Here the typical approach is an LP implementation, known as LP-IV:

◦ Basic idea: use zt to instrument for xt in a projection of yt+h on xt

yt+h = µh + βhxt + controls+ ξh,t

◦ Will decompose this into reduced-form and first-stage to arrive at equivalent VAR
representation, using our previous results

11 Wolf



VAR vs. LP: IV identification

• LP-IV

◦ Let Wt = (zt , w ′t)′. The reduced-form and first-stage projections are

yt+h = µRF,h + βRF,hzt +

∞∑
ℓ=1

δ′RF,h,ℓWt−ℓ + ξRF,h,t

xt = µFS + βFSzt +

∞∑
ℓ=1

δ′FS,ℓWt−ℓ + ξRF,t

◦ We thus get relative LP-IV IRFs as βh ≡ βRF,h/βFS

• Recursive VAR

◦ From previous results: can recover βRF,h and βFS from a recursive VAR in Wt = (zt , w ′t)′

◦ Aside: this is a VAR that works without invertibility. Why? non-invertibility is related to
measurement error σννt , which merely induces a constant attenuation bias
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LP vs. VAR in finite samples

• We have seen that LPs and VARs estimate the same IRFs in population

• In finite samples there’s a standard bias-variance trade-off
◦ VAR: extrapolate longer-run impulse responses from first few autocorrelations. Low

variance, possibly high bias.
◦ LP: no extrapolation. High variance, low bias.

• Natural Q: which to pick in finite samples? Only very brief discussion here, since this
not a class on finite-sample estimation. Main points:

1. Just looking at VARs vs. LPs is a false dichotomy. We should look for methods that
estimate autocovariance functions = second-moment properties “as well as possible”

2. Presents results from a comprehensive simulation study for a variety of estimation
techniques Note: this will be informative for typical time-series context. Trade-off with panel data
may look quite different.
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A menu of estimation strategies

• I just want to emphasize that vanilla VARs & LPs are not the only game in town:

◦ LP & adjacent methods: OLS LP, penalized LP, Bayesian LP
References: Jorda (2005), Barnichon & Brownlees (2019), Miranda-Agrippino & Ricco (2021)

◦ VAR & adjacent methods: OLS VAR, bias-corrected VAR, Bayesian VAR, VAR averaging
Hansen (2016), Kilian (1998), Kilian & Lütkepohl (2017)

• Active research area in applied macroeconometrics. I will only provide references and
summarize main simulation study results.
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Overview

• Will briefly the main results from Li, Plagborg-Møller and Wolf (2022)

• Design of the simulation study

◦ Take large-scale factor model as encompassing DGP, pick random subsets of observables
wt , try to estimate standard recursive/IV estimands
Why? such models are known to fit the properties of the “universe” of U.S. time series quite well.

◦ Estimation methods: VAR, BC-VAR, BVAR, VAR averaging, LP, pen. LP

• Results reporting

◦ Show bias and standard deviation by IRF horizon
Note that this averages over the random subsets of observables. Results do not differ much by
structural identification scheme.

◦ Q: given an IRF horizon and a relative weight on bias vs. variance, which method performs
the best on average?
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Results: bias
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Results: standard deviation
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Results: preferred method

“Loss function”: Lω(θh, θ̂h) = ω ×
(
E
[
θ̂h − θh

])2
+ (1− ω)× Var(θ̂h)
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