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Overview

® So far: population arguments for identification of SVMA coefficients

o Basic idea: use addt'l identifying information (e.g., invertibility + X, IVs, ..) to assign a
causal interpretation to certain estimable moments of aggregate time series data

o Open Q: what econometric techniques should we use to estimate those moments?

® Today's lecture: VARs vs. local projections

o Will show that they are nothing more than two different techniques for estimating second
moments. In population, under the same structural ID asn’s, they yield the same objects

o Finite-sample recommendations: should we use LPs? VARs? something else?
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VARs vs. Local Projections

® Dominant methods in semi-structural time series: VARs and Local Projections
Going back to Sims (1980) and Jorda (2005)

® Can find a lot of claims in the literature that these are somehow fundamentally
different methods. We will show that is not the case.

® The argument will proceed in two steps:

1. Define VAR and LP estimators

2. Show that their estimands are the same, using linear projection arguments
None of this will rely on an underlying SVMA model.

® Rather, the point of the SVMA model + invertibility/proxies/ ..is to establish that this
common LP/VAR estimand is actually structurally interesting.

3 Wolf



Setting and estimators

* Data-generating process

o Data {w;} are covariance stationary and nondeterministic, with absolutely summable Wold
representation coefficients

o Split the data as w;y = (r{, X¢, Y, q¢) where r; and g: are “controls”, and we are interested
in the response of y; to an “impulse” to x;

¢ LP IRF estimator
o A linear projection is a regression of an outcome y; on a “shock” x; plus controls
o The LP(0) regression equation for horizon h=10,1,2,... is
[e.e]
Yerh = o+ BrXe + Ypre + > ShoWe—g + Ene
=1

o The LP IRFs are the {3,}
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Setting and estimators

® VAR IRF estimator
o Consider the reduced-form VAR(cc)

00
Wy = C+ ZAeWt_[ + Ut
=1

o Under a recursive ordering, we arrive at the following “structural” VAR:
A(L)Wt =cCc+ Bnt
where B = chol(Var(u;)) and ¢ = B~ uy, with M1 ¢ o< U ¢, Mot X Une — E* (ot | UL t), -
o Let C(L) = A(L)™!. We can then write
we=x+C(L)ue=x+»_ CBne, x=C(1)c
=0
Then the VAR IRF of y; 4 to an innovation to x; is

9/, = Cn,+2,o,hBo,n,+1
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Equivalence result

Proposition

Let %+ = xt — E* [x¢ | rt, {wr} —co<r<t]. Then
0h =\/E(X2) xBn, h=0,1,... (1)

® (1) states that LPs and VARs estimate the same impulse responses

o Note that so far we haven't assumed an underlying SVMA model. That will only be needed
to argue that the object in (1) is structurally interesting

o The factor of proportionality in (1) just reflects a different scaling normalization, with VARs

normalizing impulses to have unit variance. Will see that in the proof.

® Proof intuition: both techniques simply estimate certain linear projections (= functions
of 2nd moments) and are willing to call them “structural”
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Equivalence result: proof sketch

® By the Frisch-Waugh theorem, the LP estimand is

_ Cov(yern, Xt)
Bn = ey
E(%)
® The VAR impulse responses equal
eh = Cn,+2,o,hBo,n,+1 = COV(YH—h: nx,t)
where ny = (1.1, Mx.t. My.t. Mg.t)'- By the properties of Cholesky decompositions we also

have
1

T @y

where Uy = (Up ¢, Uxt, Uy e, Ug ) and Gxe = Ux e — E*(Ux e | Urt) = X

X Ux,t

® Comparing the above relations, the result follows

7 Wolf



Equivalence result: discussion

® Plagborg-Mgller and Wolf (2021) further discuss the scope of this equivalence result

o Previous argument was for recursive SVAR(o0) estimands. Can easily show that the same
logic works for non-recursive identification: VAR shock = b'u; so we could run the LP

oo
Yern = tin+Ba(b'we) + Y ShoWe e + En
=1
o Can also show: with p lags (rather than oo), equivalence ~ up to horizon p
® The generality of the result reflects its very simple intuition:

o VAR(p) IRF = mean-square optimal forecast given the second moments implied by the
VAR(p) model. But a VAR(c0) matches all second-moment properties of the data.

o Thus VAR IRF = optimal forecast given second moments of the data = LP

¢ Next: walk through LP/VAR implementations of some canonical id schemes
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VAR vs. LP: recursive identification

® Recall the identification scheme of Christiano-Eichenbaum-Evans (1999)

o Assume SVMA model + invertibility + recursive ordering of macro var's, consistent with
slow-moving real effects of monetary policy

® How could we implement this as a local projection?

o Note that the model fits immediately into our structure from before: r; = GDP, prices, ..,
x; = federal funds rate, g; = profits, M2, y; = any variable in VAR

o We could thus consider running the LP

P
Yih = Wp + Bpxe + ’Y;Jt + Z 5;1,3Wt—e + fh,t
=1

Q: what happens if h =0 and y: isin r+, e.g. GDP?
® Let's see the equivalence result in action by computing the common LP/VAR estimand

in the Smets & Wouters (2007) model as a simple example DGP ...
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VAR vs. LP: recursive identification

Monetary Policy, Output Response
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VAR vs. LP: recursive identification

Monetary Policy, Output Response
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VAR vs. LP: recursive identification

Monetary Policy, Output Response
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VAR vs. LP: IV identification

® Now return again to the SVMA-IV model

we = O(L)e;

Zt = Q€1+ Ot
® We have seen that relative IRFs are identified. How could we estimate them?

® Here the typical approach is an LP implementation, known as LP-1V:
o Basic idea: use z; to instrument for x; in a projection of yyy1p on x¢
Yi+h = W + BpXe + controls + &p ¢
o Will decompose this into reduced-form and first-stage to arrive at equivalent VAR

representation, using our previous results
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VAR vs. LP: 1V identification

° LP-1V

o Let Wy = (z¢, w{)'. The reduced-form and first-stage projections are

(o]
Yerh = WREH+BrREAZE + Z Ok neWe—t + ErFnt
=1
o
Xt = WFs+Brszt+ Z 5%5,2Wt—2 +&rFt
=1

o We thus get relative LP-1V IRFs as 8, = Brr1/BFs
® Recursive VAR

o From previous results: can recover Brr ) and Brs from a recursive VAR in W, = (z, w])’

o Aside: this is a VAR that works without invertibility. Why? non-invertibility is related to
measurement error o, V¢, which merely induces a constant attenuation bias
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LP vs. VAR in finite samples

® We have seen that LPs and VARs estimate the same IRFs in population
® |n finite samples there's a standard bias-variance trade-off

o VAR: extrapolate longer-run impulse responses from first few autocorrelations. Low
variance, possibly high bias.

o LP: no extrapolation. High variance, low bias.

® Natural Q: which to pick in finite samples? Only very brief discussion here, since this
not a class on finite-sample estimation. Main points:

1. Just looking at VARs vs. LPs is a false dichotomy. We should look for methods that
estimate autocovariance functions = second-moment properties “as well as possible”

2. Presents results from a comprehensive simulation study for a variety of estimation

techniques Note: this will be informative for typical time-series context. Trade-off with panel data
may look quite different.
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A menu of estimation strategies

® | just want to emphasize that vanilla VARs & LPs are not the only game in town:

o LP & adjacent methods: OLS LP, penalized LP, Bayesian LP
References: Jorda (2005), Barnichon & Brownlees (2019), Miranda-Agrippino & Ricco (2021)

o VAR & adjacent methods: OLS VAR, bias-corrected VAR, Bayesian VAR, VAR averaging
Hansen (2016), Kilian (1998), Kilian & Liitkepohl (2017)

® Active research area in applied macroeconometrics. | will only provide references and
summarize main simulation study results.
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Overview

® Will briefly the main results from Li, Plagborg-Mgller and Wolf (2022)
® Design of the simulation study

o Take large-scale factor model as encompassing DGP, pick random subsets of observables
Wy, try to estimate standard recursive/IV estimands
Why? such models are known to fit the properties of the

‘

‘universe” of U.S. time series quite well.

o Estimation methods: VAR, BC-VAR, BVAR, VAR averaging, LP, pen. LP
® Results reporting

o Show bias and standard deviation by IRF horizon
Note that this averages over the random subsets of observables. Results do not differ much by
structural identification scheme.

o Q: given an IRF horizon and a relative weight on bias vs. variance, which method performs
the best on average?
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Results: bias
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Results: standard deviation
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Results: preferred method

“Loss function”: L, (05, 6r) = w x (E [GAh - Gh])2 + (1 —w) x Var(6p)
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