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Motivation

• We have seen: structural business-cycle models admit SVMA representations

yt =

∞∑
ℓ=0

Θℓεt−ℓ

From the Θ’s we get our objects of interest: IRFs, FVDs, HDs

• How can we use data to learn about the Θ’s? Three broad approaches:

1. Semi-structural, time series: use time-series properties of yt + identifying assumptions
that hold for families of models This will be our focus for the next few lectures.

2. Semi-structural, cross sectional: what can microeconometric causal designs teach us?
Will discuss this towards the end.

3. Structural: specify full-blown model, then estimate this model using micro/macro data
Will discuss throughout to help when semi-structural approaches fall short.
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Identifying SVMA models

• Motivated by our structural modeling results, we are willing to assume an SVMA model
for our observed macro aggregates yt :

yt =

∞∑
ℓ=0

Θℓεt−ℓ, εt ∼ WN(0, I)

Note that we may well have nε > ny .

• Identification challenge

◦ Can estimate the second-moment properties of yt (i.e., autocovariances/spectrum/Wold)

◦ The identification challenge—as we will see—is that infinitely many VMA models are
consistent with those second-moment properties

[Of course at some level this is unsurprising. Why should simple covariances tell us something about the
structural origins of business cycles or about the effects of policy interventions?]
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The Wold decomposition

• Let’s first of all show that we can always find a VMA representation

• We can do so easily using the Wold decomposition of yt :

yt = Ψ̃(L)ε̃t

where ε̃t ≡ Σ−1/2ut ∼ WN(0, I) and

ut ≡ yt − E∗(yt | {yτ}−∞<τ<t), ut ∼ WN(0,Σ)

◦ Clearly there is nothing “structural” about the ε̃t ’s—they are just orthogonal innovations in
a representation of yt , scaled to have unit variance

• Let’s show that there exist many such observationally equivalent representations, none
of which necessarily have any economic meaning …
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Indeterminacy I: rotations

• The first indeterminacy is what I’ll refer to as static indeterminacy
[note that this is my language, not standard]

◦ Start with the true SVMA model, and assume that nε = ny = n. Now let Q ∈ O(n) denote
an n × n orthogonal matrix. Then the process

yt =

∞∑
ℓ=0

Θ̃ℓε̃t−ℓ, ε̃t ∼ WN(0, I)

with Θ̃ℓ = ΘℓQ′ and ε̃t = Qεt has the same second-moment properties:

Cov(yt , yt−h) =

∞∑
ℓ=0

ΘℓΘ
′
ℓ+h =

∞∑
ℓ=0

Θ̃ℓQQ
′Θ̃′ℓ+h

• In words: orthogonal rotations of today’s shocks leave covariances unchanged
◦ This is a problem: we could just relabel the shocks or take linear combinations—the data

wouldn’t be able to reject it
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Indeterminacy II: root flipping

• The second indeterminacy is what I’ll refer to as dynamic indeterminacy

◦ To illustrate this consider a simple univariate MA(2), i.e. ny = nε = 1:

yt = θ0εt + θ1εt−1

◦ Now compare this with the following alternative process:

yt = θ1εt + θ0εt−1

Note how they share all second-moment properties! But of course the implied shock IRFs
look very different as long as θ0 ̸= θ1 …[what are they?]

◦ What did we do? We took the polynomial Θ(L) = θ0 + θ1L and “flipped the root”

• Lesson: flipping roots of MA polynomials leaves second moments unchanged
For a general multivariate treatment of this see e.g. Lippi and Reichlin (1994)

6 Wolf



Indeterminacy III: system size

• The third determinacy is what I’ll call size indeterminacy
◦ So far we’ve assumed that ny = nε. Our options for possible SVMA processes expand even

more if we allow nε > ny
◦ To illustrate suppose again that the true model is the same one-shock MA(2) as before, but

now we entertain the alternative two-shock process

yt = θ01ε1t + θ02ε2t + θ11ε1,t−1 + θ12ε2,t−1

◦ This process is just as consistent with the data as long as

Var(yt) = θ201 + θ
2
02 + θ

2
11 + θ

2
12 = θ

2
0 + θ

2
1

Cov(yt , yt−1) = θ01θ11 + θ02θ12 = θ0θ1

But of course it implies very different IRFs/FVDs/HDs …

• Lesson: we can always split any given ny -dimensional covariance structure into many
(nε > ny ) distinct shocks
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Summary: identification challenge

• From second moments alone, our SVMA model is severely under-identified
Aside: we will discuss the feasibility and desirability of identification from higher-order moments later

• At some level this is unsurprising—we so far haven’t made any economic identifying
assumptions that would allow claims about causality

• Rest of this lecture: progress with as little structure as possible

1. Invertibility + X: zero, sign, statistical, …
This is the classical “VAR” literature.

2. Identification without invertibility: macro IVs, recoverability + X
The “macro IV” approach is very popular these days, and looks rather similar to standard
microeconometric/“credibility revolution” practice.
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Invertibility

• Recall our definition of invertibility:

Definition
A VMA process {yt} is said to be invertible with respect to {εt} if

εt ∈ span(yτ ,−∞ < τ ≤ t)

• This is an economically substantive assumption:

◦ It implies that an econometrician observing {yτ}−∞<τ<t can predict just as well as an
agent living in the model and observing {ετ}−∞<τ<t

◦ Certainly need nε ≤ ny . The more (relevant) data we include, the more plausible this as’n

◦ It’s often not satisfied for standard macro models with standard observables, even if
nε = ny . Let’s consider one very simple example. Following Fernandez-Villaverde et al. (2007).
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Invertibility: illustration

• Consider a simple permanent income consumption model. Income is
et = σεεt

and consumption is
ct = ct−1 +

r

1 + r
σεεt

• Suppose we observe savings growth yt ≡ ∆st , where st = et − ct :

yt =
1

1 + r
σεεt − σεεt−1

Is this model invertible?
◦ We have one shock and one observable, so things are looking good
◦ But unfortunately it doesn’t work out, as there is no convergence in mean square:

εt =
1

σε

T∑
ℓ=0

(1 + r)ℓ+1yt−ℓ + (1 + r)
T+1εt−T
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Invertibility: discussion

• More general point: invertibility can fail for many reasons

1. A necessary—but very strong—condition is that we have as many observables as shocks

2. But even that is not sufficient. Key culprits for non-invertibility when nε = ny are:

a) There are news shocks (e.g., forward guidance, fiscal spending plans)
Like our MA from the previous slide—larger lagged than contemporaneous effect naturally
generates non-invertibility. See Leeper et al. (2013) for a detailed discussion.

b) There are noise shocks (e.g., noise that is misperceived as news about future fundamentals)
See Chahrour-Jurado (2018) for a detailed discussion.

Intuition: with those shocks we would need to be able to look into the future. ny = nε in general
only ensures that εt ∈ span(yτ ,−∞ < τ <∞), not that just looking to the past is enough. We
will return to this when we discuss recoverability.

• So what do we gain from this strong assumption? As it turns out, a lot …
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Invertibility & Wold innovations

• Invertibility has important implications for Wold innovations. Recall that

ut ≡ yt − E∗(yt | {yτ}−∞<τ<t)

• Since y and u share the same span, it follows that, under invertibility,

εt ∈ span(uτ ,−∞ < τ ≤ t)

But εt is uncorrelated with all uτ for τ < t, and ut is white noise, so εt ∈ span(ut) or

Hεt = ut

for some matrix H, where HH′ = Σ = Var(ut)

• Also recall that the Wold innovations ut and their “causal effects” Ψ(L) are identifiable.
We have thus made a lot of progress …
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Invertibility & Wold innovations

• By imposing invertibility, we have identified the structural shocks εt and their dynamic
causal effects up to the static rotation problem:

1. The structural shocks are given as

εt = QΣ
−1/2ut

2. Their dynamic causal effects are given as

Θ(L) = Ψ(L)Σ−1/2Q′

• Invertibility has thus helped with the identification problem by eliminating the dynamic
& size indeterminacy. Remains to find identifying assumptions to pin down Q …
Intuitively: ny = nε (which is required for invertibility) rules out size indeterminacy, and then the
sufficiency of past observables rules out the dynamic MA root flipping.
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Connection to VARs

• Note that this approach to identification can be operationalized using VARs:

◦ We have the SVMA model yt = Θ(L)εt . By invertibility, we know that the one-sided
inverse Ã(L) ≡ Θ(L)−1 exists.
Strictly speaking, invertibility only rules out roots outside the unit circle, not on it. Will ignore.

◦ Letting A(L) = H−1Ã(L), we thus have

A(L)yt = ut = Hεt

That is, VAR residuals = Wold residuals, which we now just need to rotate.

• The derivations above are why the literature often speaks of “VAR identification”

◦ I find this counterproductive. The identifying assumptions are invertibility + something to
pick out the right notation. We will now discuss options for this “something else” …
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Exact exclusion restrictions

• Traditional approach: point-identify the system through exact zero restrictions on Θ(L)

◦ Need to impose enough restrictions such that only one Q ∈ O(n) is consistent with them

• We will consider examples of the most well-known examples of such restrictions:

1. Restrictions on short-run impulse responses Θ0
We will review Christiano-Eichenbaum-Evans (1999, 2005).

2. Restrictions on long-run impulse responses
∑∞
ℓ=0Θℓ

We will review Blanchard-Quah (1991).
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Short-run identification

• Consider the assumption that Θ0 is lower-triangular:
◦ In economic terms: variable 1 only responds contemporaneously to shock 1, variable 2

responds contemporaneously to shocks 1 & 2, and so on
◦ Mathematically: H = chol(Σ)

• Christiano et al. (1999, 2005) operationalize this as’n to identify monetary policy shocks

◦ Observables yt : real GDP, real consumption, GDP deflator, real investment, real wage,
labor productivity, federal funds rate, real profits, growth rate of M2

◦ Assumptions: invertibility + recursive shock ordering
Here this means that all variables listed before the fed funds rate don’t respond within the period
to monetary shocks, while monetary policy doesn’t respond to changes in the variables listed after.

• This identification approach gave the “canonical” monetary policy IRFs [next slide]
Note that these IRFs look materially different on recent samples, e.g. see Barakchian-Crowe (2013)
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Short-run identification

Can you think of any problems with this?
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Long-run identification

• Suppose we are willing to impose that the long-run response of variable i to shock j is
zero. That implies:

0 =

∞∑
ℓ=0

Θi ,j,ℓ =

∞∑
ℓ=0

Ψi ,•,ℓH•,j =

∞∑
ℓ=0

Ψi ,•,ℓΣ
1/2Q′•,j (1)

◦ (1) thus imposes an additional restriction on the orthogonal matrix Q, thus aiding with
identification of the system

• Blanchard-Quah (1991) operationalize this as’n to disentangle demand & supply shocks

◦ Observables yt : real output, unemployment

◦ Assumptions: invertibility + demand shocks do not affect real output
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Long-run identification

Can you think of any problems with this?
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Motivation

• Exact zero restrictions are widely regarded as implausible
E.g.: effects of monetary policy on output may be delayed, not exactly 0 on impact.

• One popular alternative: impose restrictions on signs of impulse responses

◦ Example: a contractionary monetary shock should probably lead to an increase in interest
rates and a decrease in prices (eventually)

◦ This is promising: if central banks lean against inflation, then all non-policy shocks lead to
a positive co-movement of output and inflation

• Q: How can we operationalize this intuition? What can invertibility + sign restrictions
tell us about the SVMA model?
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Invertibility + sign restrictions

• Recall that IRFs for a given rotation Q are equal to

Θ(L) = Ψ(L)H = Ψ(L)Σ1/2Q′

• Suppose we want to impose that Θi ,j,ℓ ≥ 0. This rules out some Q’s! We need

Ψi ,•,ℓΣ
1/2Q′•,j ≥ 0 (2)

⇒ Sign restrictions give identified sets: keep all Q’s such that (i) QQ′ = I and (ii) all
imposed sign restrictions of the form (2) hold
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Example: sign restrictions for monetary policy

• Let’s illustrate the workings of sign restrictions through a toy model example:

yt = Et (yt+1)− (it − Et (πt+1)) + σdεdt (IS)
πt = κyt + βEt (πt+1)− σsεst (NKPC)
it = ϕππt + σ

mεmt (TR)

εt ≡ (εdt , εst , εmt ) ∼ WN(0, I)

• Solving the model gives a static mapping from shocks to observables: [i.e., VMA(0)]ytπt
it

 =
+ + −
+ − −
+ − +


︸ ︷︷ ︸

Θ

×

εdtεst
εmt


Denote the response of variable j to shock k by Θjk .
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Example: sign restrictions for monetary policy

• Interpreting the Q’s
◦ Let xt = (yt , πt , it)′ and Σx = Var(xt). Note that

Σx ≡ Var(xt) = ΘΘ
′

◦ Before we defined the Q’s relative Σ1/2. More generally we can define them w.r.t. any
matrix A such that AA′ = Σx , including Θ. The Q’s are just rotations w.r.t. a basis.

◦ Choosing Θ as the basis has an advantage: if Θ̃ = ΘQ′, then the matrix Q corresponds to
mis-identified structural shocks ε̃t given as

ε̃t ≡ Qεt

Of course you can only do this w.r.t. an underlying model, not in any actual empirical application.
Our point here is illustration of the workings of sign restrictions.

• We’d like to find identifying assumptions that are consistent with Q = I (so ε̃t = εt)
but rule out (almost) everything else. Q: will sign restrictions on Θ do the trick?

23 Wolf



Example: sign restrictions for monetary policy

• Let’s impose the following minimalist sign restrictions:

Θ =

? ? ?

? ? −
? ? +

 (3)

• Is this enough to learn anything about the real effects of monetary policy, Θym?

◦ Promising: monetary shocks are the only shocks to move πt and it in opposite directions

◦ This implies that ε̃mt = εmt is consistent with (3), while ε̃mt = εdt or ε̃mt = εst are not

• Formally: (3) gives us an identified set [Θym,Θym][Θym,Θym][Θym,Θym] for ΘymΘymΘym, defined via the programs

infq/supq Θ1,• · q

s.t. ||q|| = 1 and Θ2,• · q < 0, Θ3,• · q > 0
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The identified set & masquerading shocks

What does the identified set [Θym,Θym][Θym,Θym][Θym,Θym] look like?

• Since Θ is invertible, it’s easy to see that we can’t
sign ΘymΘymΘym: [proof on board]

ΘymΘymΘym < 0 <ΘymΘymΘym

• Interpretation: “masquerading” shocks

◦ The truth (q = (0, 0, 1)′) is in the identified set,
while q = (1, 0, 0)′ and q = (0, 1, 0)′ are not

◦ But: linear combos of expansionary supply and
demand shocks can also move i ↑ & π ↓, but y ↑

• In general, the identified set for Q may be empty,
contain a singleton, or contain multiple elements.
The last case (as seen here) is typical.

25 Wolf



Econometric aside: the Haar prior

• Much of the (early) sign restrictions literature doesn’t report identified sets

• Instead: additionally impose a prior on orthogonal rotation matrices, and then
characterize the implied posterior

◦ Common choice (for computational reasons): “uniform” Haar prior

◦ The effect of this prior is to re-weight the parameters in the identified set. Desirable?

• Briefly: no. The prior is funky in economic terms and can be central to posterior
tightness in actual applications. See Baumeister-Hamilton (2015) and Wolf (2020).

◦ Best practice: frequentist inference on entire identified set or Bayesian prior-robust
inference Moon-Schorfheide (2012), Giacomini-Kitagawa (2021)
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Literature overview

What other approaches for identification under invertibility are there?

1. Combining zero and sign restrictions Arias, Rubio-Ramírez and Waggoner (2018)

◦ Can yield much tighter identified sets than sign restrictions alone, even without additional
imposition of the Haar prior

2. Sign/magnitude restrictions on other objects, not IRFs. Examples:

◦ Shock that explains a large share of fluctuations in variable X Angeletos et al. (2020)

◦ Shock that explains most volatility at a particular date Antolín-Díaz & Rubio-Ramírez (2018)

3. Explicitly defended probabilistic priors on Q (rather than the Haar prior)
Baumeister and Hamilton (2015), Plagborg-Møller (2019)

4. Use more information than just second moments (= “statistical” identification)
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Statistical identification

• Identification through higher-order moments has recently gained in popularity

• Basic idea:

◦ Lack of identification so far because we only looked at second moments. If shocks are not
normal, higher-order moments can help

1. Next slide: identification through heteroskedasticity point-identifies the model
To me the most promising of these “statistical” approaches, since there’s still a lot of
economics in trying to come up with reasons for why relative shock volatilities change.

2. Alternative: if true shocks are independent and non-normal, then also point-identified
Intuition: only the true rotation of the ut ’s is independent. See Gouriéroux et al. (2017).

◦ But note: even with statistical id, you still need economic reasoning to label the shocks
E.g.: which of the “statistically” identified shocks is the monetary policy shock?
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Identification through heteroskedasticity in one slide

• Suppose now that the struct. shocks εt have different volatilities on two subsamples
◦ Write the variances as {(σaj )2, (σbj )2}nj=1 for our two subsamples a and b Note: now we are

not normalizing the shock variances, so we instead normalize the diagonal entries of H to 1.
◦ For each sub-sample k = a, b, the Wold residuals ukt satisfy

Var(ukt ) = H

(σ
k
1)
2 . . . 0

. . .
0 . . . (σkn )

2

H′ = Σk
• We thus now have more information that we can exploit:

ΣbΣ
−1
a = H


(
σb1
σa1
)2 . . . 0

. . .
0 . . . (

σbn
σan
)2

H−1
◦ Columns of H are eigenvectors of ΣbΣ−1a , which is identified. Given our normalization of

the diagonal of H to 1, we see that H is identified if the volatility ratios differ across shocks
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Graphical intuition

• Key idea: only two slopes can jointly rationalize these two clouds
◦ Easiest to see if one shock is dominant in one regime = event study. But not necessary.
◦ Of course then still need to label the two lines = two shocks

Here: what is causal effect of MP and what is rule response? Other natural application: what’s
demand and what’s supply?
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Some thoughts on statistical identification

• Comparison with our standard identification arguments

◦ Classical invertibility-based analysis assumes white noise shocks, e.g. allowing for stochastic
volatility. Just doesn’t exploit higher-order moments

◦ Statistical approaches achieve identification by strengthening assumptions on the shock
process: independence/conditional orthogonality rather than just white noise

• Some words of caution: See Montiel-Olea et al. (2022) for details.

◦ For heteroskedasticity: must assume that only volatility ratios changed, but not shock
propagation. Also can’t handle common volatility changes (Great Moderation?).

◦ Higher-order moments are hard to estimate, in particular in time series. Analysis is
necessarily fragile w.r.t. statistical properties of shocks, e.g. weak identification issues arise
if the shocks are nearly i.i.d. Gaussian

⇒ To me reliance on economic identifying asn’s is a virtue, not a bug.
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Identification without invertibility

• Recently there’s been a push towards invertibility-robust identification approaches
• To me the most promising of these is the narrative/IV approach

◦ Assumes that, through institutional knowledge, the researcher can find a valid IV for a
macro shock:

zt = αε1,t + σννt , νt ∼ WN(0, 1) (4)
◦ This brings macroeconometrics closer to microeconomic practice: try to find credible

natural experiments that satisfy (4). We will thus focus on such IVs.
◦ Main appeal: requires no further assumptions on the SVMA model, at least for IRFs

• Content of the next couple of slides:
0. Clarify what goes wrong in “VAR” analysis without invertibility
1. Discuss identification based on IVs (4) (including some popular examples)
2. Briefly: sketch “recoverability”-based identification
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Degree of invertibility

• Suppose we wish to use invertibility-based identification to study a single shock εj,t .
This can work if and only if that shock is invertible:

εj,t ∈ span(yτ ,−∞ < τ ≤ t)⇔ εj,t = h′ut for some h

◦ This condition is weaker than invertibility of all shocks. It’s commonly referred to as partial
invertibility. Forni-Gambetti-Sala (2019)

• Invertibility shouldn’t be an either-or proposition. Intuitively, we should be able to do
well if ε1,t is “close to invertible”. How to formalize that?

R2j,0 ≡ 1−
Var∗(εj,t | {yτ}−∞<τ≤t)

Var(εj,t)
= 1− Var∗(εj,t | {yτ}−∞<τ≤t)

◦ Can show: the asymptotic bias of many VAR-type procedures is a function of R2j,0,
vanishing as R2j,0 → 1 Forni-Gambetti-Sala (2019), Plagborg-Møller & Wolf (2021)

◦ Appendix: what do we in general get in the non-invertible case? Details
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Setting & identification problem

• Let’s suppose we have access to a macro IV/proxy:

zt = αε1,t + σννt , νt ∼ WN(0, 1)

◦ How may we be able to find such z ’s?
→ Institutional knowledge of policy decisions (e.g. fiscal spending ⊥ to macro conditions)
→ High-frequency financial market responses (e.g. idiosyncratic global oil supply changes)

◦ Even if found, such z ’s are unlikely to capture all of the hidden shock ε1,t , so we’ll
invariably have measurement error νt

• Q: how can we use such IVs to identify our objects of interest?
◦ Note that the econometric model is now the general SVMA + our IV equation:

yt = Θ(L)εt ,

zt = αε1,t + σννt , (ε
′
t , νt)

′ ∼ WN(0, I)
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Dynamic causal effects

• It’s trivial to identify relative dynamic causal effects

◦ Note that we have

Cov(yi ,t+ℓ, zt) = Θi ,1,ℓ Cov(ε1,t , αε1,t + σννt) = αΘi ,1,ℓ

◦ Thus we can point-identify the IRF ratio

Θi ,1,ℓ
Θ1,1,0

=
Cov(yi ,t+ℓ, zt)

Cov(y1,t , zt)

◦ This is often all we want: how does output (yi ) respond to a monetary shock that increases
nominal rates by 100bp on impact (y1)?
Absolute IRFs are only identified up to α, but we do not care.

• Note that none of these derivations assumed anything about invertibility (or more
generally, our three sources of indeterminacy). Simply not needed for IV.
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Examples of macro IVs

• Can we in practice hope to find such macro IVs?

• I will review two recent canonical examples

1. High-frequency monetary policy surprises [Gertler-Karadi (2015)]

◦ Construction: measure unexpected movements in interest rate futures around FOMC
meeting/announcement dates

◦ Identifying assumption: everyone knows rule it = f (Ωt) + εmt and information Ωt , so surprise
change must reflect εmt [Can you think of problems with that?]

2. High-frequency oil supply news [Känzig (2021)]

◦ Construction: measure unexpected movements in oil futures prices around OPEC
meeting/announcement dates

◦ Identifying assumption: surprise responses reflect only news about future oil supply
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High-frequency monetary shocks
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High-frequency oil shocks
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Aside: shock importance

• What can we say about shock importance, e.g. variance decompositions?
Issue: for this clearly need absolute impulse responses, not relative ones.

• Intuition on the identification challenge
◦ IV consists of signal (αε1,t) and noise (σννt). We don’t know the signal-to-noise ratio.
◦ This matters: e.g. can’t know whether Corr(yit , zt) is low because ε1,t is unimportant or

because there’s just a lot of noise
◦ Formally, our challenge is to say something about the forecast variance ratio:

FVRi ,1,h ≡ 1−
Var(yi ,t+h | {yt−ℓ}∞ℓ=0, {ε1,t+ℓ}∞ℓ=1)

Var(yi ,t+h | {yt−ℓ}∞ℓ=0)

=

∑h−1
m=0

1
α2 Cov(yi ,t+h, zt)

2

Var(yi ,t+h | {yt−ℓ}∞ℓ=0)

• Plagborg-Møller and Wolf (2021) prove that α and so FVR is interval-identified Details
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IVs & invertibility

• Our IV analysis so far has proceeded without assuming invertibility—causal effects and
shock importance are still (set-)identified without
• This is quite different from early time series work using macro IVs

◦ The popular “SVAR-IV” approach uses IVs as a way to solve the rotation problem in
invertibility-based identification [This is actually what’s done in Gertler-Karadi.]

◦ Suppose invertibility holds, so ut = Hεt . We can then recover ε1,t as the projection of zt
on ut (which is ∝ ε1,t), rescaled to have unit variance:

ε1,t =
[
Cov(zt , ut) Var(ut)

−1 Cov(zt , ut)
′]−1/2 Cov(zt , ut) Var(ut)−1ut︸ ︷︷ ︸

αε1,t

◦ Can then recover IRFs, variance decompositions, … in the usual invertibility-based way

• But this all proceeded assuming invertibility, which we’ve seen is not needed. In fact IVs
allow us to test invertibility …
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Testing invertibility

• The key insight is that, under invertibility, we must have

E∗(yi ,t | {zτ , yτ}−∞<τ<t) = E∗(yi ,t | {yτ}−∞<τ<t)

◦ In words: z does not help to predict future y ’s above and beyond the info contained in y
◦ Why? zt = αε1,t + σννt , where the second term is useless for forecasting future y , and the

first term is captured by past y ’s
◦ Suggests a simple test: does z Granger-cause y?

As it turns out this is in fact the only testable implication of invertibility.

• If SVAR-IV is used even though invertibility fails, then we are subject to the issues
reviewed in the slide appendix—bias that is a function of R2j,0
• Big picture: SVAR-IV is a bit of a “historical accident”, reflecting path dependence

◦ Literature thought in terms of identification through invertibility (“SVAR identification”),
so just viewing instruments as a way of finding the right Q seemed natural
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Recoverability

• Alternative approach: recoverability-based identification

Definition
A VARMA process {yt} is said to be recoverable with respect to {εt} if

εt ∈ span(yτ ,−∞ < τ <∞)

• Thus the identification problem can be solved by looking into the past & future:

εt =

∞∑
ℓ=−∞

Ψℓyt−ℓ =

∞∑
ℓ=0

Qℓut+ℓ = Q0ut +Q1ut+1 + . . .

◦ Ψ(L) is a two-sided lag polynomial and I =
∑∞
ℓ=0QℓΣQ

′
ℓ, 0 =

∑∞
ℓ=0QℓΣQ

′
h+ℓ ∀h > 0

◦ The ID problem is now even harder: we are willing to call some ny -dim. VMA “structural”
(= assume away size indeterminacy), but still need to contend with static & now dynamic
indeterminacy E.g.: Lippi-Reichlin (1994), Mertens-Ravn (2010), Chahrour-Jurado (2021)
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Summary

• This lecture note: time series methods for identifying the SVMA Θ’s

◦ We began by characterizing the identification problem: indeterminacy from three sources

◦ We then reviewed the solutions: invertibility + X, macro IVs, recoverability + X

• Next: discuss various popular econometric strategies to in practice implement these
identification approaches & so estimate the Θ’s
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Mis-identification without invertibility

• Q: what does invertibility-based identification recover without invertibility?
• We will derive everything from a state-space representation:

st = Ast−1 + Bεt (5)
yt = Cst−1 +Dεt (6)

◦ Invertibility is about the informativeness of yt about st (and so εt)
◦ We will compute this using the Kalman filter. Will rely on linear projections. Notation:

ŝt|t ≡ E∗ [st | {yτ}−∞<τ≤t ]
Σst|t ≡ var∗ [st | {yτ}−∞<τ≤t ]

and similarly for yt
◦ Algorithm: use standard linear projection formulas to update ŝt−1|t−1 and Σst−1|t−1 to ŝt|t

and Σst|t . Fixed point will give population limits (i.e., t →∞)
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Kalman filtering algorithm

• Start with ŝt−1|t−1 and Σst−1|t−1. Predicting one period ahead:

ŝt|t−1 = Aŝt−1|t−1

Σst|t−1 = AΣst−1|t−1A
′ + BB′

ŷt|t−1 = Cŝt−1|t−1

Σy
t|t−1 = CΣst−1|t−1C

′ +DD′

• Next we use yt :

ŝt|t = ŝt|t−1 + E
[
(st − ŝt|t−1)(yt − ŷt|t−1)′

]
×

E
[
(yt − ŷt|t−1)(yt − ŷt|t−1)′

]−1
(yt − ŷt|t−1)
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Kalman filtering algorithm

• Plugging in we get

ŝt|t = ŝt|t−1 +
[
AΣst−1|t−1C

′ + BD′
] [
CΣst−1|t−1C

′ +DD′
]−1

︸ ︷︷ ︸
Kalman gain Kt

(yt − ŷt|t−1)

Similarly

Σst|t = Σ
s
t|t−1 −

[
AΣst−1|t−1C

′ + BD′
] [
CΣst−1|t−1C

′ +DD′
]−1 [

AΣst−1|t−1C
′ + BD′

]′
• Thus, given any history of the observables {yt}Tt=0, we can construct a sequence of

estimates of the hidden states st
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Innovations representation

• Letting t →∞, we obtain the steady-state Kalman gain and state uncertainty:

Σs = (A−KC)Σs(A−KC)′ + BB′ +KDD′K′ − BD′K′ −KDB′

K = (AΣsC′ + BD′)(CΣsC′ +DD′)−1

• This allows us to re-write the state-space system in innovations form:

ŝt = Aŝt−1 +K (yt − ŷt|t−1)︸ ︷︷ ︸
ut

yt = Cŝt−1 + ut

with Σu = CΣsC′ +DD′

• Now we finally get to the payoff: write Wold innovations in terms of the εt ’s …
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Shocks and innovations

• The innovations representation gives(
st
ŝt

)
=

(
A 0

KC A−KC

)(
st−1
ŝt−1

)
+

(
B

KD

)
εt

ut =
(
C −C

)(st−1
ŝt−1

)
+Dεt

to arrive at
ut =

{
D +

(
C −C

)(
I −

(
A 0

KC A−KC

)
L

)−1(
B

KD

)
L

}
εt =

∞∑
ℓ=0

Mℓεt

◦ Under invertibility, st = ŝt , so ut = Dεt , exactly as we have seen
◦ Without invertibility, the identified shocks ε̃t = H−1ut are a linear combination of current

and past true shocks εt
◦ Can show that the weight on εj,t is bounded above by

√
R2j,0, and that SVAR-IV attains

this bound Wolf (2020)
back
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Lower bound

• Finding a lower bound on shock importance is trivial

◦ We must clearly have α2 ≤ σ2z – the IV can’t be better than perfect

◦ This upper bound on α gives a lower bound on the FVR, corresponding to naive regression
of yi ,t+h on zt , ignoring measurement error

• In practice, IVs are noisy, so this lower bound is often close to 0
back
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Upper bound

• Why should we expect there to be an upper bound? Example:
◦ Suppose y1,t and y2,t have the same variance, but Cov(y1,t , zt)≫ Cov(y2,t , zt). Then ε1,t

can’t explain much of y2,t .
◦ Why? If it explained much of y2,t , it would more than all of y1,t , which is impossible

• Let’s formalize this intuition in a static SVMA model
◦ The model now is yt = Θ0εt , and we let Σy = Var(yt) = Θ0Θ′0
◦ Then we must have that

Σy −
1

α2
Cov(yt , zt) Cov(yt , zt)

′ is positive semi-definite (7)

Why? otherwise the leftover part is not a valid stochastic process (e.g., negative variance)

• The full argument simply applies the requirement (7) to all frequencies separately
back
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High-frequency monetary shocks

back
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High-frequency oil shocks
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