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Structural business-cycle models

• Structural business-cycle models (RBC, NK, HANK, …) are mappings from

structural shocks εt

to
macroeconomic aggregates yt

• Today’s lecture:

1. Two ways of constructing a linear approximation of this mapping

(a) State-space approach

(b) Sequence-space approach

}
yield structural vector moving average (SVMA)

2. Map SVMA model into our objects of interest (IRF, FVD, HD)

• Rest of this class: how to use data to learn about coefficients of SVMA model
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Running example

• Will illustrate the methods through a running example: neoclassical growth model

1. Model relationships

ct + it + gt = yt

yt = ztk
α
t−1

it = kt − (1− δ)kt−1
qtc

−γ
t = βEt

[
qt+1c

−γ
t+1

[
αzt+1k

α−1
t + (1− δ)

]]
This is a standard NGM simplified to feature exogenous labor supply, and enriched with gov’t
spending and a menu of shocks. We will later also consider a richer heterogeneous-agent version.

2. Exogenous driving forces: shocks to TFP (εzt → zt), consumer demand (εqt → qt) & gov’t
spending (εgt → gt). Will usually consider simple AR(1)’s for those.

• Objective: characterize dynamic behavior of (yt , it , ct , . . . ) to first order
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Overview

• There exist many standard treatments for the solution of linear rational expectations
systems. The original reference is Blanchard & Kahn (1980).

◦ I will follow the gensys notation of Sims (1999)

◦ My discussion will be brief, as you are already supposed to be familiar with this material
from first-year macroeconomics

◦ Will consider a rep.-agent model. Similar methods in principle work for het.-agent models
[Ahn et al. (2019)], but for those I prefer sequence-space approaches.

• Underlying computational routines: gensys or dynare

◦ We will go through a solution of the running example in dynare

◦ Exercise: replicate the same numerical solution using gensys

• Roadmap: model solution → SVMA representation → objects of interest
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Linear state-space solution

The solution approach proceeds in two steps:

1. Linearize the model’s equilibrium conditions to arrive at the form

Γ0x̂t = Γx̂t−1 +Ψεt +Πηt (1)

◦ x̂t contains all model variables in (log-)deviation from the deterministic steady state
◦ εt ∼ N(0, I) are “structural” shocks. Orthogonality by assumption, unit variance is

normalization, and normality purely for convenience
◦ ηt is a vector of expectational errors satisfying Et [ηt+1] = 0, indicating which of the

equations in (1) hold only in expectation

2. Solve (1), giving a mapping from shocks to macro variables in state-space form:

x̂t = G1x̂t−1 +Θεt (2)

We are interested in some particular variables yt , given as ŷt ≡ C̃x̂t
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1. Linearization

• Begin with the endogenous model relations. I log-linearize:

1. Output market-clearing
c̄ ĉt + ī ît + ḡĝt = ȳ ŷt

2. Production function
ŷt = ẑt + αk̂t−1

3. Investment
ît =

1

δ

[
k̂t − (1− δ)k̂t−1

]
4. Euler equation

q̂t − γĉt = Et
[
q̂t+1 − γĉt+1 + [1− β(1− δ)][ẑt+1 + (α− 1)k̂t ]

]
• Finally we have exogenous laws of motion—say AR(1)’s—for (ẑt , q̂t , ĝt)
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1. Linearization

Stacking everything in the required form:


−c̄ −ī ȳ 0 −ḡ 0 0

0 0 1 0 0 −1 0

0 1 0 − 1
δ

0 0 0

−γ 0 0 0 0 [1− β(1− δ)] 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


︸ ︷︷ ︸

Γ0



ĉt
ît
ŷt
k̂t
ĝt
ẑt
q̂t



=



0 0 0 0 0 0 0

0 0 0 α 0 0 0

0 0 0 − 1−δ
δ

0 0 0

−γ 0 0 −[1− β(1− δ)](α− 1) 0 0 1

0 0 0 0 ρg 0 0

0 0 0 0 0 ρz 0

0 0 0 0 0 0 ρq


︸ ︷︷ ︸

Γ1



ĉt−1
ît−1
ŷt−1
k̂t−1
ĝt−1
ẑt−1
q̂t−1


+



0 0 0

0 0 0

0 0 0

0 0 0

σg 0 0

0 σz 0

0 0 σq


︸ ︷︷ ︸

Ψ

εgtεzt
εqt

+


0

0

0

1

0

0

0


︸ ︷︷ ︸
Π

ηt
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2. Solution

• Objective: find a mapping from εt to xt that is: (i) consistent with (1) and (ii) such
that xt remains bounded with probability 1 [remember the debate about this in 14.451?]

• We will recover such a solution under two addt’l assumptions, to make things easy:
1. Γ0 is invertible
2. The eigenvectors of A ≡ Γ−10 Γ1 are linearly independent

By the first assumption we can re-write the system as

x̂t = Ax̂t−1 + Γ
−1
0 (Ψεt +Πηt)

Eigen-decompose A as A = PΛP−1, where the eigenvalues are ordered from smallest to
largest (in absolute value). Defining ŵt ≡ P−1x̂t , we may write

ŵt = Λŵt−1 +Q(Ψεt +Πηt), Q ≡ P−1Γ−10
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2. Solution

• Partition Λ as
Λ =

(
Λs 0

0 Λe

)
where Λs is diagonal with all elements smaller than 1 in absolute value, and Λe is
diagonal with all elements greater than 1 in absolute value
• Now write the system with one stable block and one unstable block:(

ŵ1,t
ŵ2,t

)
=

(
Λs 0

0 Λe

)(
ŵ1,t−1
ŵ2,t−1

)
+

(
Q1
Q2

)
(Ψεt +Πηt)

• The stability requirement will impose restrictions on the explosive block. Write it as
ŵ2,t = Λ

−1
e ŵ2,t+1 − Λ−1e Q2(Ψεt+1 +Πηt+1)

and so

ŵ2,t = lim
T→∞

Λ−Te ŵ2,t+T −
T∑
s=1

Λ−se Q2(Ψεt+s +Πηt+s)
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2. Solution

• Taking expectations at time t:

ŵ2,t = lim
T→∞

Λ−Te Et(ŵ2,t+T )−
T∑
s=1

Λ−se Q2Et(Ψεt+s +Πηt+s) = 0

• We thus must have ŵ2,t = 0 and so

Q2(Ψεt +Πηt) = 0

The equilibrium exists and is unique if this equation uniquely defines ηt . Assume that it
does, and write the solution as

ηt = −(Q2Π)−1Q2Ψεt
• Plugging everything back into the stable block:

ŵ1,t = Λs ŵ1,t−1 +Q1(Ψ− Π(Q2Π)−1Q2Ψ)εt
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2. Solution

• Collecting everything, we have(
ŵ1,t
ŵ2,t

)
=

(
Λs 0

0 0

)(
ŵ1,t−1
ŵ2,t−1

)
+

(
Q1(Ψ− Π(Q2Π)−1Q2Ψ)

0

)
εt

or
x̂t = P

(
Λs 0

0 0

)
P−1︸ ︷︷ ︸

G1

x̂t−1 + P

(
Q1(Ψ− Π(Q2Π)−1Q2Ψ)

0

)
︸ ︷︷ ︸

Θ

εt

• We have thus arrived at the desired model solution—a mapping from exogenous shocks
εt to the dynamics of the macro variables x̂t , in the form of a VAR(1):

x̂t = G1x̂t−1 +Θεt

◦ Note: stability implies that all eigenvalues of G1 are inside the unit circle
See the posted codes for the running example.
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From state-space model to SVMA

• We write the model solution in canonical state-space form:

x̂t = Ax̂t−1 + Bεt , εt ∼ N(0, I) (3)
ŷt = Cx̂t−1 +Dεt (4)

◦ From our solution: xt collects all variables, A ≡ G1, B ≡ Θ, ŷt ≡ C̃x̂t is a selection of
variables we are interested in, and C ≡ C̃A and D ≡ C̃B

◦ Note: I prefer the form (3) - (4) because it is general enough to also nest measurement
error in (4), if desired (though we won’t consider it)

• Substitute recursively, using stability of the system:

ŷt = Dεt + CBεt−1 + CABεt−2 + CA
2Bεt−3 + · · · ≡

∞∑
ℓ=0

Θℓεt−ℓ

• This is a SVMA(∞) representation: mapping the history of shocks εt to yt via the Θ’s
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Objects of interest

Our objects of interest are now given as simple functions of SVMA coefficients:

1. Dynamic causal effects

IRFi ,j,h = Θi ,j,h = E(ŷi ,t+h | εj,t = 1)− E(ŷi ,t+h | εj,t = 0), h = 0, 1, 2, . . .

2. Shock importance for average cyclical fluctuations

FVDi ,j,h ≡ 1−
Var(ŷi ,t+h | {εt−ℓ}∞ℓ=0, {εj,t+ℓ}hℓ=1)

Var(ŷi ,t+h | {εt−ℓ}∞ℓ=0)
=

∑h−1
m=0Θ

2
i ,j,m∑nε

j=1

∑h−1
m=0Θ

2
i ,j,m

3. Contribution of shocks to particular historical episodes
Note: here we need the SVMA coefficients (the Θ’s) plus the shocks themselves.

HDi ,j,t = E
(
ŷi ,t | {εj,t−ℓ}∞ℓ=0

)
=

∞∑
ℓ=0

Θi ,j,ℓεj,t−ℓ
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Linear sequence-space solution

• Will now present a different solution strategy: the sequence-space approach
Less established, so I will discuss it in more detail, following Auclert et al. (2021).

• Big picture comparison: stochastic shocks vs. MIT shocks
1. So far we’ve considered stochastic shocks of the form

ẑt = ρz ẑt−1 + σzε
z
t , ε

z
t ∼ N(0, 1)

We reduced the system to a 1st-order stoch. linear difference equation in state variables +
shocks (“state-space”) and recovered the stable solution through eigendecomposition.

2. Alternatively we could consider perfect foresight (“MIT”) shock paths

ẑt = ρ
t
zσz

and solve for linearized transition sequences (“sequence-space”) back to steady state.

• Q: What’s the difference?
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Linear sequence-space solution

• Kind of obvious—but still underappreciated—result: they are the same!

◦ Formal result: see Boppart et al. (2018) or Auclert et al. (2021)

◦ Intuition preview: linearity implies certainty equivalence = perfect foresight

→ We will see this in our running example: sequence-space approach solves the same
(linearized) equations as the state-space approach, giving the same SVMA representation

• Though they give the same end result, I think there are at least two good reasons to
add sequence-space methods to your toolkit:

1. Sometimes it is more convenient computationally (e.g. HANK models, as you have seen in
recitation with Alex)

2. It is often easier to map model to data (both time-series and cross-sectional)
Preview: sequence-space will be key for (i) opt. policy and (ii) X-sectional to macro aggregation.
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Sequence-space model

• For sequence-space approaches, we will let boldface denote sequences, e.g.

yyy = (y0, y1, y2, . . . )
′

I.e., yyy is the perfect-foresight transition path from t = 0 to ∞ given exogenous shock paths εεε.

• Let xt denote a model’s endogenous variables and εt its shocks. A perfect-foresight
equilibrium given shock paths εεε is then a set of paths xxx such that

F (xxx,εεε) = 000 (5)

where F (•) embeds the model’s equilibrium relations (Euler equation, output
market-clearing, …) In a couple of slides we will make this concrete in our running example …

• Heuristically, we can to first order write (5) as

Fx x̂xx + Fεεεε = 0 (6)

(6) implicitly defines a mapping from ε’s to x ’s, just as before.
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Sequence-space model

• In fact we often times can arrive at a lower-dimensional representation of equilibria that
does not involve all variables x : given εεε, may be able to characterize equilibria via

H(uuu,εεε) = 000 (7)

where nu < nx , with x then given residually via xxx = M(uuu,εεε). To first order we can write
this as

Huûuu +Hεεεε = 000 ⇔ ûuu = −H−1u Hεεεε
• We thus recover

x̂xx = Mu
[
−H−1u Hεεεε

]
+Mεεεε

• In particular, if we are again just interested in some var’s yyy = N(uuu,εεε), then

ŷyy = Nu
[
−H−1u Hεεεε

]
+ Nεεεε

Let us illustrate using the simple example …
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Running example

• Claim: We can write the system as one set of equations (market-clearing) in one
unknown ut (which will be capital kt). How?
◦ We are given (εεεg, εεεz , εεεq) and so (ggg,zzz,qqq). We want to write the eq’m as one equation in

the unknown kkk given εεε. So suppose we knew kkk and then go through eq’m conditions.
◦ kkk and zzz give yyy from the production function. We also get iii from kkk via the def’n of i .
◦ The Euler equation maps (qqq,zzz,kkk) into ccc .
◦ If indeed ccc + iii + ggg = yyy then we have verified all eq’m relations

⇒ This function from kkk and shocks εεε to market-clearing is our H(•) function. We get the other
variables in x (output, investment, consumption, …) from k and ε– the auxiliary function M(•).

• Differentiating this function gives Hu. Evaluating it for kkk = k̄kk and a given shock path εεε
gives Hεεεε. Thus we can solve for the equilibrium kkk , and from there get yyy , iii and ccc

• This is best seen by walking through the code …
18 Wolf



From sequence-space to SVMA

• Note that the model solution is immediately in the form of shock IRFs:

Θ•,j,• ≡ Nu
[
−H−1u Hεj e1

]
+ Nεj e1

where the εj subscript denotes differentiation w.r.t. shock j and e1 = (1, 0, 0, . . . )′

• The perfect foresight solution has thus directly given us SVMA coefficients:

yt =

∞∑
ℓ=0

Θℓεt−ℓ

The Θ’s will be the same as before, as we are solving the exact same equations:

→ Recall: IRFs in stochastic model = shock (1, 0, 0, . . . )′ + linearized optimality conditions
that hold at t = 0 and (in expectation) at t = 1, 2, . . . + return to steady state (stability)

→ But the sequence-space approach imposes the exact same linear relations at t = 0, 1, . . . +
return to steady state, so you get the same numbers!
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Motivation

• In our RA running example, it was easy to arrive at the eq’m characterization

H(uuu,εεε) = 000

and then derive the required objects {Hu,Hεεεε}

• Sequence-space methods however really shine in heterogeneous-agent models
[notably the recently popular heterogenous-household NK models]

◦ In principle both the state-space and sequence-space methods reviewed here can be used to
solve het.-agent models. Just the dimensionality of the system increases.

◦ Sequence-space methods are however particularly appealing because the solution only
require inverses of (nu · T )× (nu · T ) matrices rather than Schur decompositions of nx × nx
matrices, where nx can end up very large [see Ahn et al. (2019) for an example]

• Will illustrate using a sequence-space algorithm for an HA extension of our example
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HA running example

• Consumption-savings decisions are now made by a continuum of households i
◦ Households save in an asset (capital) with return rt , have idiosyncratic earnings risk eit ,

and pay taxes τt
◦ The household consumption-savings problem is to

max
ait ,cit

E0

[ ∞∑
t=0

βtqt
c1−γit − 1
1− γ

]

subject to the budget constraint

cit + ait = eitwt + (1 + rt)ait−1 − τt , ait ≥ a

where eit is household i ’s (stochastic) productivity and
∫ 1
0 eit = 1

◦ The solution to this problem gives (complicated) consumption and savings decisions rules
(previously summarized by a simple Euler equation relation)
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HA running example

• Rest of the model
◦ Optimal firm behavior gives the factor prices as

rt = αztk
α−1
t−1 + (1− δ), wt = (1− α)yt

◦ The government finances its expenditure with taxes today, so gt = τt
◦ The asset market clears with

kt =

∫ 1

0

aitdi

This implies output market-clearing:∫ 1

0

citdi + it + gt = yt

Exercise: solve the RBC model version under this decentralization & verify that the solution is the
same as the planning equilibrium considered so far.

• Same objective as before: characterize dynamic behavior of (yt , it , ct , . . . ) to first order
22 Wolf



HA running example: equilibrium representation

• Claim: We can again write the eq’m system as one set of equations (market-clearing) in
one unknown (capital ut = kt):

◦ As before we arrive at yyy and iii . We also get (rrr ,www) from firm behavior and τττ from the
government budget.

◦ For each household i we get consumption ccc i as a function of real rates, wages, taxes, and
the demand shock. Summing over households, we get an aggregate consumption function:

ccc = C(rrr ,www,τττ,qqq)

and so, to first order,
ĉcc = Cr r̂rr + Cwŵww + Cτ τ̂ττ + Cqq̂qq (8)

Thus the only change is that (8) replaces the Euler equation

• The remaining computational challenge is how to get the C•’s …
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Naive approach

• Need to know Cr (t, s) ≡ ∂ct
∂rs

for t, s ∈ {0, 1, . . . , T − 1} (and similarly for w , τ , q)
• Simple idea: compute Cr column by column

◦ Set rrr = r̄rr + ε× es , where es is a vector of 0’s and 1 at entry s, and ε is a small number
◦ Iterate backward from T to get consumption and asset policies cst (e, a) and ast (e, a)

everywhere on the productivity/asset state space E × A given prices (rrr , w̄ww, τ̄ττ, q̄qq)
[e.g. using endogenous gridpoint method (Carroll, 2005)]

◦ Iterate forward using policies to get the distribution Dst (e, a) over the state space
◦ Compute the implied path of aggregate consumption, with

cst =

∫
cst (e, a)dD

s
t (e, a)

◦ Approximate the sth column as (cst − c̄)/ε

• Note that this is costly: needs to be done T times for each input to the C-function
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Fake-news algorithm

• The “fake-news” algorithm—the key contribution of Auclert et al. (2021)—exploits the
fact that there is a lot of redundancy in the naive approach
Note: my discussion here will follow their paper quite closely.

• Main appeal: it is T -times faster

◦ Relies on a single backward and a single forward iteration, rather than T of those

◦ Loosely speaking: exploits certain symmetries in agent decisions around the steady state

This can make a difference for large HANK-type models …
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Fake-news algorithm

• Key to the algorithm is the so-called “fake-news” matrix Fr :

Cr =


Cr (0, 0) Cr (0, 1) Cr (0, 2) . . .

Cr (1, 0) Cr (1, 1) Cr (1, 2) . . .

Cr (2, 0) Cr (1, 2) Cr (2, 2) . . .
...

...
...

. . .

 , Fr =

Cr (0, 0) Cr (0, 1) Cr (0, 2) . . .

Cr (1, 0) Cr (1, 1)− Cr (0, 0) Cr (1, 2)− Cr (0, 1) . . .

Cr (2, 0) Cr (1, 2)− Cr (1, 0) Cr (2, 2)− Cr (1, 1) . . .
...

...
...

. . .


◦ First column: responses to surprise shock today

◦ All further columns: shock at s > 0 is announced at t = 0, but then reversed at t = 1 (it
was “fake news”)

• The algorithm will yield Fr very quickly. From there we’ll be able to get Cr
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The backward iteration

• Recall that cst (e, a) and ast (e, a) give time-t decision rules for a perturbation at time s
• Claim: we can get these decision rules from a single backward intuition

◦ Key insight: only the time s − t until the perturbation matters:

cst (e, a) =

{
c̄(e, a) if s < t
c
(T−1)
T−1−(s−t)(e, a) if s ≥ t

where bar denotes steady state. Why? remember first-year dynamic programming!

◦ Implies: a single backward iteration from s = T − 1 is enough to get all of the c(•) and
a(•) decision rules on the state space

• We can use these decision rules to get two objects:
1. cs0 =

∫
cs0(e, a)dD

s
0(e, a) =

∫
cs0(e, a)dD̄(e, a), i.e. the first row of Fr

2. The time-1 distributions implied by the various time-0 decisions: dDs1(e, a)
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Taking stock

• So far we already have the first row:

Fr =


✓ ✓ ✓ . . .

? ? ? . . .

? ? ? . . .
... ... ... . . .


• The key insight of the fake-news algorithm is that the other rows are easy:

◦ Obvious: we can complete the first column by just iterating the distribution forward from
dD01(e, a), using steady-state decision rules

◦ But crucially: because the initial news are reversed at t = 1, we can similarly get all other
columns by iterating forward the respective dDs1(e, a) using steady-state decision rules

• The forward iteration step formalizes this …
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The forward iteration

• Let Λ̄ denote the transition matrix across the state space E × A using steady-state
decision rules. Forward iteration gives

dD̃st (e, a) = Λ̄× dD̃st−1(e, a)

as the “fake-news” distributions. We can start this using dD̃s1(e, a) = dDs1(e, a).

• Using this, we can get

c̃st ≡
∫
c̄(e, a)dD̃st (e, a) = c̄

′(Λ̄′)t−1dDs1(e, a)

Finite differences thus give us all the entries of Fr via (c̃st − c̄)/ε, and so Cr .

◦ Note that this requires just one distributional forward iteration using steady-state
consumption decision rules
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Closed-form example

• To provide a different perspective on the intuition let’s consider a “one-agent” example,
allowing us to ignore the distributional component and thus giving closed-form solutions
• Environment: perpetual-youth OLG [Blanchard (1985)]

◦ In that case can show that the first column of the MPC matrix Cτ satisfies

C(τ•, 1) =
(
1−

θ

1 + r̄

)
︸ ︷︷ ︸

MPC

×
{
1, θ, θ2, . . .

}′︸ ︷︷ ︸
spending decay

while the first row is given as

C(τ1, •) =
(
1−

θ

1 + r̄

)
︸ ︷︷ ︸

MPC

×

{
1,
θ

1 + r̄
,

(
θ

1 + r̄

)2
, . . .

}
︸ ︷︷ ︸

anticipation effects

◦ We can use the logic of the fake news algorithm to complete the matrix
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Closed-form example

• What can we say about the second column?
◦ Fake-news logic: must be equal to (i) news shock that is reversed at date 1 + (ii) a new

surprise shock at date 1
◦ But we can write this as

Cτ (•, 2) = Cτ (1, 2)×
(

1

−Cτ (•, 1)(1 + r̄)

)
︸ ︷︷ ︸

response to fake news

+

(
0

Cτ (•, 1)

)
︸ ︷︷ ︸

reverse the fake news

Simpler than HANK: no distributional considerations needed, just one agent whose asset holdings
have declined by −Cτ (1, 2)× (1 + r̄).

• All other columns then follow recursively:

Cτ (•, h) = Cτ (1, h)×
(

1

−Cτ (•, 1)(1 + r̄)

)
+

(
0

Cτ (•, h − 1)

)
, h = 3, 4, . . .
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Outline

1. Linear State-Space Methods
Model Representation & Solution
SVMA Model and Objects of Interest

2. Linear Sequence-Space Methods
Model Representation & Solution
Heterogeneous-Agent Models & the “Fake-News” Algorithm

3. Summary
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Summary

• In line with the impulse-propagation framework, modern structural business-cycle
models are mappings from exogenous shocks εt to macro outcomes yt

• Today we saw two numerical techniques to linearly approximate this mapping:

1. State-space methods (= first-order perturbation)

2. Sequence-space methods (= linearized perfect foresight)

Both yield the same SVMA(∞) representation of the mapping εt → yt

• Rest of the class: how to use data to learn about the Θ’s of the VMA mapping
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