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Structural business-cycle models

¢ Structural business-cycle models (RBC, NK, HANK, ..) are mappings from
structural shocks &;

to
macroeconomic aggregates y;
® Today's lecture:
1. Two ways of constructing a linear approximation of this mapping
(a) State-space approach

(b) S }yield structural vector moving average (SVMA)
equence-space approach

2. Map SVMA model into our objects of interest (IRF, FVD, HD)

® Rest of this class: how to use data to learn about coefficients of SVMA model
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Running example

e Will illustrate the methods through a running example: neoclassical growth model

1. Model relationships

Gtiet+ge = Yt
Vi = ztkiy
e = kt_(l_é)ktfl
Gec.” = BE¢ [ [azenki™ +(1-0)]]

This is a standard NGM simplified to feature exogenous labor supply, and enriched with gov't
spending and a menu of shocks. We will later also consider a richer heterogeneous-agent version.

2. Exogenous driving forces: shocks to TFP (¢ — z;), consumer demand (ef — ;) & gov't
spending (e — g¢). Will usually consider simple AR(1)’s for those.

* Objective: characterize dynamic behavior of (y;, it, ¢, ... ) to first order
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Overview

® There exist many standard treatments for the solution of linear rational expectations
systems. The original reference is Blanchard & Kahn (1980).

o | will follow the gensys notation of Sims (1999)

o My discussion will be brief, as you are already supposed to be familiar with this material
from first-year macroeconomics

o Will consider a rep.-agent model. Similar methods in principle work for het.-agent models
[Ahn et al. (2019)], but for those | prefer sequence-space approaches.

® Underlying computational routines: gensys or dynare
o We will go through a solution of the running example in dynare

o Exercise: replicate the same numerical solution using gensys

® Roadmap: model solution — SVMA representation — objects of interest
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Linear state-space solution

The solution approach proceeds in two steps:

1. Linearize the model's equilibrium conditions to arrive at the form
FoXe = [ Re—1 + Wer +T1ne (1)

o X; contains all model variables in (log-)deviation from the deterministic steady state

o gt ~ N(0, 1) are “structural” shocks. Orthogonality by assumption, unit variance is
normalization, and normality purely for convenience

o 7y is a vector of expectational errors satisfying E; [n:+1] = 0, indicating which of the
equations in (1) hold only in expectation

2. Solve (1), giving a mapping from shocks to macro variables in state-space form:
X = G1X¢—1 + O¢g; (2)

We are interested in some particular variables y;, given as §y = CX;
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1. Linearization

® Begin with the endogenous model relations. | log-linearize:

1. Output market-clearing
CCt + 1it + 9gr = ¥yt
2. Production function R

Vi =7 + aki

3. Investment 1

it:g

[Re = (1= 8)kia
4. Euler equation

Ge =7 = Ee [Gern =781 + [1 = B(L = 0)][Zea + (@ — 1)k

® Finally we have exogenous laws of motion—say AR(1)'s—for (2;, G, §t)
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2. Solution

® Objective: find a mapping from €; to x; that is: (i) consistent with (1) and (ii) such
that x; remains bounded with probability 1 [remember the debate about this in 14.4517]

® We will recover such a solution under two addt’l assumptions, to make things easy:
1. g is invertible

2. The eigenvectors of A = rglrl are linearly independent

By the first assumption we can re-write the system as
Re = ARe—1 + TgH(Wee + MNny)

Eigen-decompose A as A = PAP~!, where the eigenvalues are ordered from smallest to
largest (in absolute value). Defining Wy = P~1%;, we may write

We = ANp—1 + Q(Wer + M), Q= P’lrgl

8 Wolf



2. Solution

® Partition A as

Ns O
N= ( 0 /\e)
where /A is diagonal with all elements smaller than 1 in absolute value, and A¢ is

diagonal with all elements greater than 1 in absolute value

® Now write the system with one stable block and one unstable block:

VT/l t /\5 0 Wl t—1 Ql)
L) = L + Ve +T1
(W2,t) <0 /\e> <W2,t1) (Qz (Wer + Mme)
® The stability requirement will impose restrictions on the explosive block. Write it as

Woe = Aot er1 — Ao Qa(Wepr + Mnerr)

and so
-

~ . N _
Woe = lim AT e — > A Qo(Weris + Mneys)
T—o0 —
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2. Solution

® Taking expectations at time t:

;
Wo,e = _lim_ NTBe(o,e47) = D A QoEe(Werts + Meys) = 0

s=1

® We thus must have W, ; = 0 and so
Q2(Ver +Mn) =0

The equilibrium exists and is unique if this equation uniquely defines n;. Assume that it
does, and write the solution as

ne = —(Q2M) ' QaVe,
® Plugging everything back into the stable block:
Wie = Asine1 + Q1 (W — M(Q2M) 1 QaV)ey
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2. Solution

® Collecting everything, we have
Wit (Ns O\ (W11 n Q1(V — M(Q2M)"1QV)
~ = ~ Et
Wa, ¢ 0 0/ \wo ;-1 0

_ -1
=P </\OS 8) P l%_1+P (Ql(w I_I(QOQI_I) QzW)) €t

G1 ©

or

® We have thus arrived at the desired model solution—a mapping from exogenous shocks
€t to the dynamics of the macro variables X¢, in the form of a VAR(1):

Xt = G1X¢—1 + O¢;

o Note: stability implies that all eigenvalues of G; are inside the unit circle

See the posted codes for the running example.
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From state-space model to SVMA

® We write the model solution in canonical state-space form:
)Aq_- = A)?tfl + BEt, Et ~ N(O, /) (3)
,Vt = C)?t—l + Dst (4)

o From our solution: x; collects all variables, A= G, B=0, y; = C)?t is a selection of
variables we are interested in, and C=CA and D=CB

o Note: | prefer the form (3) - (4) because it is general enough to also nest measurement
error in (4), if desired (though we won't consider it)

® Substitute recursively, using stability of the system:
[ee]
YVt = De¢+ CBery + CABer_p + CA’Ber 3+ - = ) Opery
£=0

® This is a SVMA(0) representation: mapping the history of shocks € to y; via the ©'s
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Objects of interest

Our objects of interest are now given as simple functions of SVMA coefficients:

1. Dynamic causal effects
IRFijh=0Oijn =Eitsn| e =1) —E(itsnl€e=0), h=012,...
2. Shock importance for average cyclical fluctuations

~ h—1
Var(Ji t+h | {Et—l}?iov {Ej.t—i-é}g:l) _ Zmzo e/2,j,m
Var(¥i,en | {ee-2}720) >y Sl e?

IJ,m

FVD,Jh =1-

3. Contribution of shocks to particular historical episodes
Note: here we need the SVMA coefficients (the ©'s) plus the shocks themselves.

(o)
HDjje = E (Jie | {€),e-0}5%0) = D _ ©ijt€)t—e
=0
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Linear sequence-space solution

® Will now present a different solution strategy: the sequence-space approach

Less established, so | will discuss it in more detail, following Auclert et al. (2021).
® Big picture comparison: stochastic shocks vs. MIT shocks
1. So far we've considered stochastic shocks of the form
2t = p 21+ 0,65, €~ N, 1)

We reduced the system to a lst-order stoch. linear difference equation in state variables +
shocks (“state-space”) and recovered the stable solution through eigendecomposition.

2. Alternatively we could consider perfect foresight (“MIT") shock paths
5 _ ot
2 = py0;
and solve for linearized transition sequences (“sequence-space”) back to steady state.

® Q: What's the difference?

14

Wolf



Linear sequence-space solution

¢ Kind of obvious—but still underappreciated—result: they are the same!
o Formal result: see Boppart et al. (2018) or Auclert et al. (2021)
o Intuition preview: linearity implies certainty equivalence = perfect foresight

— We will see this in our running example: sequence-space approach solves the same
(linearized) equations as the state-space approach, giving the same SVMA representation

® Though they give the same end result, | think there are at least two good reasons to
add sequence-space methods to your toolkit:

1. Sometimes it is more convenient computationally (e.g. HANK models, as you have seen in
recitation with Alex)

2. It is often easier to map model to data (both time-series and cross-sectional)

Preview: sequence-space will be key for (i) opt. policy and (ii) X-sectional to macro aggregation.
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Sequence-space model

® For sequence-space approaches, we will let boldface denote sequences, e.g.

/
y=0Woy1.y2....)
l.e., y is the perfect-foresight transition path from t = 0 to oo given exogenous shock paths €.

® let x; denote a model’s endogenous variables and € its shocks. A perfect-foresight
equilibrium given shock paths € is then a set of paths x such that

F(x,e)=0 (5)

where F(e) embeds the model’s equilibrium relations (Euler equation, output

market-clearing, ) In a couple of slides we will make this concrete in our running example ...
® Heuristically, we can to first order write (5) as
FX+ Fe=0 (6)

(6) implicitly defines a mapping from €'s to x's, just as before.
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Sequence-space model

® |n fact we often times can arrive at a lower-dimensional representation of equilibria that
does not involve all variables x: given €, may be able to characterize equilibria via

H(u,e) =0 (7)

where n, < ny, with x then given residually via x = M(u, €). To first order we can write
this as
Hi+He=0 <& 0=—-H,'He

® We thus recover
X =M, [—H, Hee] + Mee

® |In particular, if we are again just interested in some var's y = N(u, €), then
¥ = Ny [—H;'Hee] + Nee

Let us illustrate using the simple example ...
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Running example

® Claim: We can write the system as one set of equations (market-clearing) in one
unknown v (which will be capital k;). How?

o We are given (g4,€,,€4) and so (g,z,q). We want to write the eq'm as one equation in
the unknown k given €. So suppose we knew k and then go through eq'm conditions.

o k and z give y from the production function. We also get i from k via the def'n of /.
o The Euler equation maps (q, z, k) into c.
o If indeed ¢ + i 4+ g = y then we have verified all eq’'m relations

= This function from k and shocks € to market-clearing is our H(e) function. We get the other

variables in x (output, investment, consumption, ..) from k and e— the auxiliary function M(e).

e Differentiating this function gives H,. Evaluating it for k = k and a given shock path &
gives Hce. Thus we can solve for the equilibrium k, and from there get y, i and ¢

® This is best seen by walking through the code ..
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From sequence-space to SVMA

® Note that the model solution is immediately in the form of shock IRFs:
Ouje = Ny [—Hy M He e1] + Nejer
where the €; subscript denotes differentiation w.r.t. shock j and e; = (1,0,0,...)

® The perfect foresight solution has thus directly given us SWVMA coefficients:

o0
Ye = Z Oet—e
=0

The ©'s will be the same as before, as we are solving the exact same equations:

— Recall: IRFs in stochastic model = shock (1,0,0,...)" + linearized optimality conditions
that hold at t = 0 and (in expectation) at t = 1,2,... + return to steady state (stability)

— But the sequence-space approach imposes the exact same linear relations at t =0,1,... +
return to steady state, so you get the same numbers!
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Motivation

® |n our RA running example, it was easy to arrive at the eq’'m characterization
H(u,e) =0
and then derive the required objects {H,, Hc€}

® Sequence-space methods however really shine in heterogeneous-agent models

[notably the recently popular heterogenous-household NK models]

o In principle both the state-space and sequence-space methods reviewed here can be used to
solve het.-agent models. Just the dimensionality of the system increases.

o Sequence-space methods are however particularly appealing because the solution only
require inverses of (n, - T) x (n, - T) matrices rather than Schur decompositions of n, X ny
matrices, where ny can end up very large [see Ahn et al. (2019) for an example]

e Will illustrate using a sequence-space algorithm for an HA extension of our example

20

Wolf



HA running example

¢ Consumption-savings decisions are now made by a continuum of households /

o Households save in an asset (capital) with return r:, have idiosyncratic earnings risk ejq,
and pay taxes T;

o The household consumption-savings problem is to

o0 1,,7
c, '—1
6tq it
Z 1y

t=0

max [Eg
aijt,Cit

subject to the budget constraint
Gt +aie=eewr + (14 re)ajp—1 —Tr, air>a

where e;; is household i's (stochastic) productivity and fol er =1

o The solution to this problem gives (complicated) consumption and savings decisions rules
(previously summarized by a simple Euler equation relation)

21 Wolf



HA running example

® Rest of the model
o Optimal firm behavior gives the factor prices as
rtzaztk?_711+(l—5), Wy = (1_a)yt

o The government finances its expenditure with taxes today, so g = T

1
kt = / a,'td/
0

1
/ Citdi + It + gt = ¥t
0

o The asset market clears with

This implies output market-clearing:

Exercise: solve the RBC model version under this decentralization & verify that the solution is the
same as the planning equilibrium considered so far.

® Same objective as before: characterize dynamic behavior of (v, it, ¢t, ... ) to first order
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HA running example: equilibrium representation

® Claim: We can again write the eq'm system as one set of equations (market-clearing) in
one unknown (capital vy = ki):

o As before we arrive at y and i. We also get (r, w) from firm behavior and T from the
government budget.

o For each household / we get consumption ¢; as a function of real rates, wages, taxes, and
the demand shock. Summing over households, we get an aggregate consumption function:

c=C(r,w,7.q)

and so, to first order,
C=Cr+CyW+CT+Coq (8)

Thus the only change is that (8) replaces the Euler equation
® The remaining computational challenge is how to get the Cs's ...
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Naive approach

® Need to know C,(t,s) = g—fsf for t,s € {0,1,..., T — 1} (and similarly for w, 7, q)
® Simple idea: compute C, column by column

o Set r =7+ ¢€ X e5, where e is a vector of 0's and 1 at entry s, and € is a small number

o lterate backward from T to get consumption and asset policies c; (e, a) and a;(e, a)
everywhere on the productivity/asset state space £ x A given prices (r, w, T, q)
[e.g. using endogenous gridpoint method (Carroll, 2005)]

o lterate forward using policies to get the distribution D (e, a) over the state space

o Compute the implied path of aggregate consumption, with

ford :/Cts(e,a)dDi(e, a)
o Approximate the sth column as (¢; — €)/¢e

® Note that this is costly: needs to be done T times for each input to the C-function
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Fake-news algorithm

® The “fake-news” algorithm—the key contribution of Auclert et al. (2021)—exploits the
fact that there is a lot of redundancy in the naive approach
Note: my discussion here will follow their paper quite closely.

® Main appeal: it is T-times faster

o Relies on a single backward and a single forward iteration, rather than T of those

o Loosely speaking: exploits certain symmetries in agent decisions around the steady state

This can make a difference for large HANK-type models ...
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Fake-news algorithm

® Key to the algorithm is the so-called “fake-news” matrix F,:

¢.(0,0) C(0,1) €(0,2) ... ¢.(0,0) ¢.(0,1) ¢.(0,2)
C.(1,0) C(1,1) C(1,2) ... C.(1,0) C/(1,1)—Cr(0,0) Ci(1,2)—Cr(0,1)

C=1c20 ¢(1.2 c22) .| F=|c20 (1,2 -C(1.0) C(22) —C(11)

o First column: responses to surprise shock today

o All further columns: shock at s > 0 is announced at t = 0, but then reversed at t =1 (it
was “fake news")

® The algorithm will yield F, very quickly. From there we'll be able to get C,
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The backward iteration

® Recall that ¢f(e, a) and a3 (e, a) give time-t decision rules for a perturbation at time s

¢ Claim: we can get these decision rules from a single backward intuition

o Key insight: only the time s — t until the perturbation matters:

(e, a) c(e, a) ifs<t
c;(e a) = z
t C§T7117)(57t)(e, a) ifs>t

where bar denotes steady state. Why? remember first-year dynamic programming!
o Implies: a single backward iteration from s = T — 1 is enough to get all of the c(e) and

a(e) decision rules on the state space

® We can use these decision rules to get two objects:
L. ¢§=[cS(e,a)dD(e,a) = [ c5(e,a)dD(e, a), i.e. the first row of F,

2. The time-1 distributions implied by the various time-0 decisions: dDj(e, a)
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Taking stock

® So far we already have the first row:

ESERNEAN
ENERNEAN

® The key insight of the fake-news algorithm is that the other rows are easy:

o Obvious: we can complete the first column by just iterating the distribution forward from
dD?(e, a), using steady-state decision rules

o But crucially: because the initial news are reversed at t = 1, we can similarly get all other
columns by iterating forward the respective dDj(e, a) using steady-state decision rules

® The forward iteration step formalizes this ...
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The forward iteration

® Let A denote the transition matrix across the state space £ x A using steady-state
decision rules. Forward iteration gives

dDi(e,a) = A x dD;_4(e, a)
as the “fake-news" distributions. We can start this using dD5(e, a) = dD3(e, a).

® Using this, we can get
&= / c(e, a)dDi(e, a) = & (N)"1dDj(e, a)

Finite differences thus give us all the entries of F;, via (¢ — C)/¢, and so C;.

o Note that this requires just one distributional forward iteration using steady-state
consumption decision rules
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Closed-form example

® To provide a different perspective on the intuition let's consider a “one-agent” example,
allowing us to ignore the distributional component and thus giving closed-form solutions

® Environment: perpetual-youth OLG [Blanchard (1985)]
o In that case can show that the first column of the MPC matrix C;, satisfies

Cle, 1) = (1—&) x{1,0,62 ...}
N—————
N———

spending deca
MPC P & Y

while the first row is given as

0 0 0 \?
( _(1_
Crl.e) (1 1+F)X{1'1+F'<1+F>""}
N———

MPC

anticipation effects

o We can use the logic of the fake news algorithm to complete the matrix
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Closed-form example

® What can we say about the second column?

o Fake-news logic: must be equal to (i) news shock that is reversed at date 1 + (ii) a new
surprise shock at date 1

o But we can write this as

Cr(,2) = C+(1,2) X (—a(-, D+ F)) * (a(g, 1))

response to fake news reverse the fake news

Simpler than HANK: no distributional considerations needed, just one agent whose asset holdings
have declined by —C-(1,2) x (1 + 7).

® All other columns then follow recursively:

Coo h) = Co(1, h) x (—CT(o,le)(l—f—F)) + <CT(.,?7_ 1)), h=34 .
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Summary

® In line with the impulse-propagation framework, modern structural business-cycle
models are mappings from exogenous shocks €; to macro outcomes y;

® Today we saw two numerical techniques to linearly approximate this mapping:

1. State-space methods (= first-order perturbation)

2. Sequence-space methods (= linearized perfect foresight)

Both yield the same SVMA() representation of the mapping €; — y:

® Rest of the class: how to use data to learn about the ©'s of the VMA mapping
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